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Evolution of cooperation by multilevel selection
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We propose a minimalist stochastic model of multilevel (or group)
selection. A population is subdivided into groups. Individuals
interact with other members of the group in an evolutionary game
that determines their fitness. Individuals reproduce, and offspring
are added to the same group. If a group reaches a certain size, it
can split into two. Faster reproducing individuals lead to larger
groups that split more often. In our model, higher-level selection
emerges as a byproduct of individual reproduction and population
structure. We derive a fundamental condition for the evolution of
cooperation by group selection: if b/c > 1 + n/m, then group
selection favors cooperation. The parameters b and ¢ denote the
benefit and cost of the altruistic act, whereas n and m denote the
maximum group size and the number of groups. The model can be
extended to more than two levels of selection and to include
migration.

finite populations | prisoner’s dilemma | group selection |
fixation probability | stochastic process

Competition between groups can lead to selection of coop-
erative behavior. This idea can be traced back to Charles
Darwin, who wrote in 1871: “There can be no doubt that a tribe
including many members who..were always ready to give aid to
each other and to sacrifice themselves for the common good,
would be victorious over other tribes; and this would be natural
selection” (1). The first mathematical model of group selection
was proposed in 1945 by Sewall Wright (2). The enthusiastic
attempt of early group selectionists to understand all of the
evolution of altruism from this one perspective (3, 4) has led to
vigorous criticism and a general denial of such ideas for decades
(5-8). Only a small number of biologists continued to work in
this area (9-19). Over many years, D. S. Wilson was the main
proponent of the idea of group selection (20-22). Nowadays,
there seems to be a renewed interest in the subject, as demon-
strated by many empirical and theoretical studies (23-28). The
current analysis of group selection is also closely related to the
attempt at understanding the simultaneous effect of natural
selection on multiple-levels (29-31). In our opinion, group
selection is an important organizing principle that permeates
evolutionary processes from the emergence of the first cells to
eusociality and the economics of nations.

Consider a population that is subdivided into groups. The
fitness of individuals is determined by the payoff from an
evolutionary game. Interactions occur between members of the
same group. We model stochastic evolutionary dynamics. In any
one time step, a single individual from the entire population is
chosen for reproduction with a probability proportional to its
fitness. The offspring is added to the same group. If the group
reaches a critical size, n, it will divide into two groups with
probability g. The members of the group are randomly distrib-
uted over the two daughter groups, see Fig. 1. With probability
1— g, the group does not divide, but a random individual of the
group is eliminated. Therefore, n resembles the maximum
number of individuals in a single group. The total number of
groups is constant and given by m; whenever a group divides,
another group is eliminated. These assumptions ensure that the
total population size is constrained between a lower bound, m,
and an upper bound, mn.

10952-10955 | PNAS | July 18,2006 | vol. 103 | no.29

Our simple model has some interesting features. The entire
evolutionary dynamics are driven by individual fitness. Only
individuals are assigned payoff values. Only individuals repro-
duce. Groups can stay together or split (divide) when reaching
a certain size. Groups that contain fitter individuals reach the
critical size faster and, therefore, split more often. This concept
leads to selection among groups, although only individuals
reproduce. The higher-level selection emerges from lower-level
reproduction. Remarkably, the two levels of selection can op-
pose each other.

Any evolutionary game can be analyzed in our framework, but
here, we focus on the interaction between cooperators and
defectors. Cooperators pay a cost, ¢, which ensures that other
members of the same group receive a benefit, b. Defectors pay
no cost and provide no benefit. Defectors benefit from cooper-
ators that are present in the same group. In any mixed group,
defectors have a higher payoff than cooperators. In homoge-
neous groups, however, cooperators have a higher payoff than
defectors. This tension might allow for the evolution of coop-
eration. Our aim is to calculate the associated fixation proba-
bilities. Therefore, we study the effect of population structure on
pure selection dynamics.

Imagine that a single cooperator is added to a population of
defectors. What is the probability, pc, that this cooperator gives
rise to a lineage that replaces all defectors and takes over the
entire population? As long as the cooperators exist in mixed
groups, the odds are against them, but, if by chance, a homo-
geneous cooperator group arises, then the emerging higher-level
selection works for them. Conversely we can also calculate the
fixation probability, pp, of a single defector that is added to a
population of cooperators. Here, the situation is reversed. The
invading defectors are initially favored by individual selection in
mixed groups but, later, opposed by the emerging higher-level
selection among homogeneous groups. We argue that selection
favors cooperation if the fixation probability pc is greater than
the inverse of the population size, which is greater than pp.

In general, even our very simple model is too complicated to
allow an exact calculation of the fixation probabilities. We can
make progress, however, by assuming that splitting of groups
occurs only very rarely (small g). Then, most groups are at their
maximum carrying capacity and consist of only cooperators or
only defectors when they split. Therefore, the fixation probability
is simply the product of the fixation probability of a single
individual in a group times the fixation probability of this group
in the population. In this limit, the model becomes a hierarchy
of two Moran processes, one for individuals and one for groups.
A similar setup was studied by Paulsson (31) in the context of
plasmid replication in bacteria.

For the fixation probability of one cooperator in a group of
n — 1 defectors, we obtain ¢c = [1/n][1 — (b + cn — c)w/2].
For the fixation probability of one cooperator group in a
population of m — 1 defector groups, we obtain ®¢ = [1/m][1 +
(b — ¢)(m — 1)w/2]. The intensity of selection is given by the

Conflict of interest statement: No conflicts declared.
This paper was submitted directly (Track ) to the PNAS office.
*To whom correspondence should be addressed. E-mail: martin_nowak@harvard.edu.

© 2006 by The National Academy of Sciences of the USA

www.pnas.org/cgi/doi/10.1073/pnas.0602530103



SINPAS

X
LR
X

Fig. 1. The population is subdivided into m groups. Individuals interact
within a group in terms of an evolutionary game. The payoff of the game is
interpreted as fitness. At each time step, an individual from the entire pop-
ulation is chosen for reproduction proportional to fitness. The offspring is
added to the same group. If a group reaches the maximumssize, n, then it splits
with probability g. In this case, the individuals of the group are randomly
assigned to the two daughter groups, and another randomly chosen group is
eliminated (to maintain a constant number of groups). With probability 1 —
g, arandomly chosen individual from the groups is eliminated. Although only
individuals reproduce, there are two levels of selection. At the lower level,
individuals compete with othersin the same group. At the higher level, groups
compete with each other; groups that contain fitter individuals have more
reproductive events and, therefore, split more often. This dynamic population
structure favors the evolution of cooperation if the benefit-to-cost ratio of the
altruistic act exceeds 1 plus the ratio of group size divided by the number of
groups: b/c > 1+ (n/m).

parameter w. Both results hold for weak selection (small w). Note
that the lower-level selection within a group is frequency-
dependent and opposes cooperators, whereas the higher-level
selection between groups is constant and favors cooperators.

In the case of rare group splitting, the fixation probability of
a single cooperator in the entire population, is given by the
product pc = Pcde. It is easy to see that pc > 1/(nm) leads to
b/c>1+ [n/(m — 2)].If this inequality holds, then cooperators
are advantageous once both levels of selection are combined. In
Supporting Text, which is published as supporting information on
the PNAS web site, we also show that the same condition implies
that defectors are disadvantageous once both levels of selection
are combined. We note that at least m = 3 groups are needed
for cooperation to have any chance (see Fig. 4, which is published
as supporting information on the PNAS web site).
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Fig. 2. The critical benefit-to-cost ratio, b/c, for which cooperators and

defectors fixate with the same probability is shown for a fixed group size, n =
10 (a) and for a fixed number of groups, m = 10 (b). The numerical simulations
for g = 1073 (circles) agree perfectly with the theory for weak selection and
g << 1givenbyb/c> 1+ n/(m — 2); see Eq. 24 in Supporting Text. Simulations
for g = 1.0 (triangles) show that the critical b/cis even smaller when g is larger:
More frequent group splitting favors cooperators. All simulations are per-
formed for weak selection, w = 0.1.

For a large number of groups, m >=> 1, we obtain the simplified
condition

é>1+ﬁ 1
Ce 1 (1]

The benefit-to-cost ratio of the altruistic act must exceed one
plus the ratio of group size over number of groups. This
condition is intuitively appealing: Smaller group sizes and larger
numbers of groups favor cooperators. In the limit m >> n, all we
need is b > ¢, which is the basic requirement for evolution of any
altruistic behavior.

Fig. 2 demonstrates the perfect agreement between our
calculation and numerical simulations for small splitting prob-
ability, g. The simulations are also performed for ¢ = 1, which
means that groups always split once they reach the maximum
size. Larger g favors cooperators, because splitting of mixed
groups can occasionally lead to homogeneous cooperator
groups. Therefore, Eq. 1 is pessimistic. For larger g, even smaller
values of b/c are enough to favor the evolution of cooperation.
In particular, we also observe that, for larger g, already m = 2
groups can be enough to favor cooperation.
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Fig. 3. The critical benefit-to-cost ratio, b/c, where cooperators and defec-
tors have the same fixation probability, is shown as a function of the migration
rate A. After each reproductive event, the offspring can move to another
group (with probability A) or stay in the same group (with probability 1 — A).
The simulations for g = 1073 (open circles) and g = 1072 (filled squares) agree
well with the theory (shown as solid and dashed lines, respectively) for weak
selection, w << 1, and small splitting probabilities, g << 1, given by b/c > 1 +
(n + mz)/(m — 2 — z/n); see Eq. 34 in Supporting Text. Simulations for g = 1
show that cooperators can be favored even for higher migration rates if
groups split rapidly (parameters: m = 10, n = 10, w = 0.1).

We can relax the assumption that groups represent perfect
boundaries and allow for some migration of individuals between
groups. Migration can be seen as “noise” of group selection. At
any one time step, there is a (small) probability, A, that a random
individual moves to another group. Migration enables defectors
to invade and take over groups of cooperators. The reverse is
also possible but less likely. Including migration, cooperators are
favored over defectors provided

b n
—>1+z+—. [2]
c m

The benefit-to-cost ratio has to exceed the same term as before
plus the average number of migrants z = \/q arising from one
group during its lifetime. (The lifetime of a group is defined as
the time between the foundation of the group and its elimination
caused by the splitting of another group.) Again, Eq. 2 holds in
the limit of weak selection, w << 1, and rare group splitting, g <<
1. We have also assumed that m >> 1; the condition for any m
is shown in Supporting Text. For m >> n, Eq. 2 means that the
benefit-to-cost ratio must exceed one plus the average number
of migrants arising from one group. Fig. 3 again illustrates the
excellent agreement between our theory and numerical data
from computer simulations.
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We can extend our analysis to more than two levels of
selection. On the lowest level, there is frequency-dependent
selection between cooperators and defectors. On all higher
levels, there is constant selection between groups, groups of
groups (metagroups), and so on. If there are / levels of selection
with population sizes my, ..., my, then we find that a single
cooperator is an advantageous mutant if

b
>l 3
¢ _h""z}":zmi 1

This result holds for weak selection on all levels and ignoring
migration. For 4 = 2, we recover our earlier finding. Note that
Eq. 3 implies, for example, that 4 = 2 levels of selection with
my = 6 groups have the same effect as &7 = 3 levels of selection
with m, = 3 groups and m3 = 4 metagroups.

There is a long-standing tradition of comparing group selection
with kin selection (7, 29, 30, 32-39), and, often, the distinction
between these two approaches is blurred. Our present model can be
interpreted as describing purely cultural evolution: Groups consist
of genetically unrelated individuals, and successful groups attract
new individuals, which learn the strategies of others in the same
group. For this interpretation, kin selection seems to be inappro-
priate. But our model can also be interpreted as describing genetic
evolution, in which case, the members of the same group could be
said to be more related than members of different groups, and the
machinery of kin selection might apply. It would be interesting to
see how the mathematical methods of kin selection can be used to
derive our central results given by Egs. 1-3 and what assumptions
are needed for such a derivation. The problem is that the typical
methods of kin selection are based on traditional considerations of
evolutionary stability, which are not decisive for games in finite
populations (40).

In summary, we have presented a minimalist model of mul-
tilevel selection that allows the analytic calculation of a critical
benefit-to-cost ratio of the altruistic act required for the evolu-
tion of cooperation. If b/c > 1 + n/m, then a single cooperator
has a fixation probability that is greater than the inverse of the
population size, and a single defector has a fixation probability
that is less than the inverse of the population size. Hence, this
simple condition ensures that selection favors cooperators and
opposes defectors. The condition holds in the limit of weak
selection and rare group splitting. The parameters n and m
denote the maximum group size and the number of groups. If we
include migration, the fundamental condition becomes b/c >

1 + z + n/m, where z is the average number of migrants arising
from one group during its lifetime. These simple conditions have
to hold for the group selection of altruistic behavior.
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